Emergent eddy saturation from an energy constrained eddy parameterisation

نویسنده

  • J. Mak
چکیده

The large-scale features of the global ocean circulation and the sensitivity of these features with respect to forcing changes are critically dependent upon the influence of the mesoscale eddy field. One such feature, observed in numerical simulations whereby the mesoscale eddy field is at least partially resolved, is the phenomenon of eddy saturation, where the time-mean circumpolar transport of the Antarctic Circumpolar Current displays relative insensitivity to wind forcing changes. Coarse-resolution models employing the Gent–McWilliams parameterisation with a constant Gent–McWilliams eddy transfer coefficient seem unable to reproduce this phenomenon. In this article, an idealised model for a wind-forced, zonally symmetric flow in a channel is used to investigate the sensitivity of the circumpolar transport to changes in wind forcing under different eddy closures. It is shown that, when coupled to a simple parameterised eddy energy budget, the Gent–McWilliams eddy transfer coefficient of the form described in Marshall et al. (2012) [ A framework for parameterizing eddy potential vorticity fluxes , J. Phys. Oceanogr., vol. 42, 539–557], which includes a linear eddy energy dependence, produces eddy saturation as an emergent

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Southern Ocean Response to Relative Velocity Wind Stress Forcing

An eddy resolving quasi-geostrophic model of the Southern Ocean coupled to a dynamic atmospheric mixed layer is used to compare the performance of two different wind stress parameterisation schemes. The first is the standard quadratic drag law based on atmospheric velocity alone, while the second (more exact) formulation is based on the difference between ocean and atmosphere velocities. The tw...

متن کامل

Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer

Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...

متن کامل

A new gauge-invariant method for diagnosing eddy diffusivities

Coarse resolution numerical ocean models must typically include a parameterisation for mesoscale turbulence. A common recipe for such parameterisations is to invoke mixing of some tracer quantity, such as potential vorticity or buoyancy. However, it is well known that eddy fluxes include large rotational components which necessarily do not lead to any mixing; eddy diffusivities diagnosed from u...

متن کامل

Design of Nondestructive System for Hardness of Carbonitrided Steel Parts ‎Using Eddy Current Testing Method: Case study on the Tappet Parts

In this paper, a non-destructive eddy current test system was designed to evaluate the surface hardness of the carbonitrided steel parts. For this purpose, various samples of the tappet were used after the surface hardening and grinding operations as control samples and, if necessary, were subjected to destructive and non-destructive tests. Microstructural studies were performed with a microsco...

متن کامل

On the Minimum Potential Energy State and the Eddy Size–Constrained APE Density

Exactly solving the absolute minimum potential energy state (Lorenz reference state) is a difficult problem because of the nonlinear nature of the equation of state of seawater. This problem has been solved recently but the algorithm comes at a high computational cost. As the first part of this study, the authors develop an algorithm that is;10–10 times faster,making it useful for energy diagno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017